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We study a single-product setting in which a firm can source from two suppliers, one that is unreliable and
another that is reliable but more expensive. Suppliers are capacity constrained, but the reliable supplier
may possess volume flexibility. We prove that in the special case in which the reliable supplier has no flexibility
and the unreliable supplier has infinite capacity, a risk-neutral firm will pursue a single disruption-management
strategy: mitigation by carrying inventory, mitigation by single-sourcing from the reliable supplier, or passive
acceptance. We find that a supplier’s percentage uptime and the nature of the disruptions (frequent but short
versus rare but long) are key determinants of the optimal strategy. For a given percentage uptime, sourcing
mitigation is increasingly favored over inventory mitigation as disruptions become less frequent but longer.
Further, we show that a mixed mitigation strategy (partial sourcing from the reliable supplier and carrying
inventory) can be optimal if the unreliable supplier has finite capacity or if the firm is risk averse.

Contingent rerouting is a possible tactic if the reliable supplier can ramp up its processing capacity, that is,
if it has volume flexibility. We find that contingent rerouting is often a component of the optimal disruption-
management strategy, and that it can significantly reduce the firm’s costs. For a given percentage uptime,

mitigation rather than contingent rerouting tends to be optimal if disruptions are rare.
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1. Introduction
In March 2000, lightning caused a fire that shut down
the Philips Semiconductor plant in Albuquerque,
New Mexico, for six weeks, leading to a shortage of
components for both Ericsson and Nokia. According
to The Wall Street Journal, “company officials say they
[Ericsson] lost at least $400 million in potential rev-
enue” and “when the company revealed the damage
from the fire for the first time publicly last July, its
shares tumbled 14% in just hours” (Latour 2001). In
February 1997, a fire in a Toyota brake-supplier plant
led directly to a two-week shut down of 18 Toyota
plants in Japan, with a resulting cost of $195 mil-
lion (Treece 1997). Fires, of course, are not the only
cause of disruptions. Hurricane Mitch caused catas-
trophic damage to banana production in many parts
of Central America in 1998. It took many growers over
a year to recover, leading to a prolonged loss of sup-
ply for Dole and Chiquita (Griffy-Brown 2003). An
earthquake in Taiwan severely disrupted supply of
essential components to the personal-computer indus-
try leading up to the 1999 holiday season (Burrows
1999).

It is informative to compare the supply chain strate-
gies of companies and their resulting ability to cope
with some of the above-mentioned disruptions. Nokia
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lost all of its supply from the Philips plant, but it
was able to temporarily increase production at alter-
native suppliers during the disruption, and so suf-
fered little financial impact. In contrast, Ericsson had
been “weeding out backup suppliers for many parts”
and, according to Jan Ahrenbring, Ericsson’s market-
ing director for consumer goods, the company con-
sequently “did not have a Plan B” (Latour 2001).
Ericsson’s single-source strategy caused it to lose over
$400 million in potential revenue. A similar con-
trast appears in the Hurricane Mitch situation. Chig-
uita, although it lost significant supply, was able to
temporarily increase production at some of its other
(unaffected) suppliers in the region. Dole had no alter-
native suppliers in the region and lost 70% of its
regional supply. Dole suffered a 4% decline in rev-
enues (and lost over $100 million) while Chiquita
increased revenues by 4% in the fourth quarter of 1998
(Griffy-Brown 2003). Firms do not need to rely exclu-
sively on supply-side tactics during a disruption. Dell
was able to leverage its demand-management capabil-
ities to shift demand to alternative products that were
less supply constrained during the 1999 Taiwanese
earthquake disruption, whereas Apple, lacking the
same demand-management capability, was much less
able to cope with the disruption (Griffy-Brown 2003).
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Table 1 Tactics for Managing Disruption Risks
Category Tactic Examples

Financial mitigation Business interruption

In the fourth quarter of 2003, Palm Inc. received a $6.4 million insurance settlement arising

insurance from an earlier fire at a supplier’s factory.
Operational mitigation Inventory Playmates Toys mitigated the impact of the 2002 west-coast dock disruption by investing in inventory
earlier in the year.
The U.S. Strategic Petroleum Reserve protects the U.S. against interruptions in crude-oil supplies.
Sourcing Nokia's multiple-supplier sourcing strategy mitigated the impact of the Philips Semiconductor disruption
in 2000.
Chiquita’s multiple-location sourcing strategy mitigated the impact of the 1998 Hurricane Mitch disruption.
Operational contingency Rerouting Nokia responded to the Philips Semiconductor disruption by temporarily increasing production at

alternative suppliers.

Chiquita responded to the Hurricane Mitch disruption by temporarily increasing production at alternative

locations.

New Balance responded to the west-coast dock disruption by rerouting ships to the east coast and by air

freighting supplies.

Chrysler responded to the air-traffic disruption in the immediate aftermath of September 11th by
temporarily switching to ground transportation to move components from a U.S. supplier to the
Dodge Ram assembly plant in Mexico.

Demand management  Dell responded to the disruption in memory supply caused by the 1999 Taiwanese earthquake by shifting
customer demand to lower-memory personal computers.

Firms can use a number of tactics to manage the
risk of disruptions (see Table 1). Mitigation tactics are
those in which the firm takes some action in advance
of a disruption (and so incurs the cost of the action
regardless of whether a disruption occurs). Contin-
gency tactics are those in which a firm takes an action
only in the event a disruption occurs. We note that
a contingent-rerouting tactic is viable only if suppli-
ers have volume flexibility, that is, the ability to tem-
porarily increase their processing capacity. A firm is
not limited to choosing a single tactic, and in many
circumstances a combination of tactics might be the
appropriate strategy for managing disruption risk.
Mitigation and contingency actions are not free, and
therefore passive acceptance of the disruption risk
may be appropriate in certain circumstances. Passive
acceptance is often the default strategy even when it is
not appropriate. In a recent survey (Poirier and Quinn
2004), only 33% of firms responded that they paid
“sufficient attention to supply chain vulnerability and
risk mitigation actions.” The focus of this paper is
on operational tactics for managing disruption risk.
In particular, we focus on the supply-side tactics of
inventory, sourcing, and rerouting.

We study a single-product setting in which a firm
can source from two suppliers, one that is unreliable
and another that is reliable but more expensive. Sup-
pliers are capacity constrained, but the reliable sup-
plier may possess volume flexibility. In the special
case where the reliable supplier has no flexibility,
we prove that a risk-neutral firm will pursue a
pure (i.e., not mixed) disruption-management strat-
egy (mitigation by carrying inventory, mitigation by

single-sourcing from the reliable supplier, or pas-
sive acceptance) if the unreliable supplier has infi-
nite capacity. We find that supplier reliability and the
nature of the disruptions (e.g., frequent but short ver-
sus rare but long) are key determinants of the optimal
strategy. For a given supplier reliability, as measured
by percentage uptime, sourcing mitigation tends to
be favored over inventory mitigation as disruptions
become less frequent but longer. We prove that a
mixed mitigation strategy (partial sourcing from the
reliable supplier and carrying inventory) can be opti-
mal if the firm is risk averse or if the unreliable
supplier has finite capacity. Finite capacity amplifies
the effect of disruptions because the unreliable sup-
plier cannot immediately recover from a disruption.
We find that this issue of delayed recovery strongly
influences the firm’s optimal disruption-management
strategy.

We also characterize the firm’s optimal disruption-
management strategies when the reliable supplier
possesses volume flexibility. We introduce an opera-
tional definition of volume flexibility that is charac-
terized by the amount of extra capacity that becomes
available and the speed with which it becomes avail-
able. Volume flexibility allows contingent rerouting to
be a tactic. We find that contingent rerouting is often
a component of the optimal disruption-management
strategy and that it can significantly reduce the firm’s
costs. One might expect that rare disruptions would
favor a contingency tactic, as contingent costs are
incurred only in the event of a disruption. Interest-
ingly, for a given supplier reliability, we find that
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sourcing mitigation often becomes optimal as disrup-
tions become less frequent.

The remainder of this paper is organized as follows.
Section 2 surveys the existing literature. A general
model is presented in §3. A restricted version of the
model is analyzed in §4. Section 5 returns to the gen-
eral model and conclusions are presented in §6. The
proofs for this paper can be found in the online sup-
plement (available on the Management Science website
at http://mansci.pubs.informs.org/ecompanion.html)
along with certain technical details that, while impor-
tant building blocks, are of secondary importance
to the main results. An unabridged version of this
paper (available from the author upon request) con-
tains an extended treatment of the risk-averse alloca-
tion decision considered in §5.1. We use the following
mathematical notation in the paper: [x]* = max{x, 0};
[x]” = max{—x, 0}; |x] = largest integer less than or
equal to x; [x] = smallest integer greater than or equal
to x.

2. Literature Review

While the mitigation and contingency framework
seems like a natural one for supply-uncertainty prob-
lems, we are not aware of its usage in the existing
supply-uncertainty literature. Nevertheless, we use
this framework in positioning this paper in relation to
the existing literature.

In supply-disruption models, a supplier (or re-
source) is either up or down. When the supplier is up
it delivers an order in full and on time, but no order
can be supplied when it is down. The supply pro-
cess is characterized by the interfailure-time distribu-
tion and the repair-time distribution. The status of any
supplier is always known to the firm in the disrup-
tion literature of which we are aware. The majority of
supply-disruption papers focus on a single-supplier
problem (Meyer et al. 1979, Bielecki and Kumar 1988,
Parlar and Berkin 1991, Parlar and Perry 1995, Gupta
1996, Song and Zipkin 1996, Moinzadeh and Aggar-
wal 1997, Parlar 1997, Arreola-Risa and De Croix
1998). With no alternative source available, inventory
mitigation is the only disruption-management strat-
egy under consideration in these papers.

Parlar and Perry (1996) and Giirler and Parlar
(1997) are, to the best of our knowledge, the only
supply-disruption papers that consider more than one
supplier. Both papers consider a firm that faces con-
stant demand and sources from two identical-cost,
infinite-capacity suppliers. The firm faces a fixed cost
of ordering (although the fixed cost is only incurred
once even if the order is split between suppliers).
Interfailure and repair times are exponentially dis-
tributed for both suppliers in Parlar and Perry (1996).
The authors propose a suboptimal ordering policy

that is solved numerically. Giirler and Parlar (1997)
extend the work of Parlar and Perry by consider-
ing the case of Erlang-k interfailure times and gen-
eral repair times. They develop a cost expression that
needs to be numerically evaluated and demonstrate
how to numerically optimize the inventory for the
case of Erlang-2 interfailure distributions and expo-
nential repair times.

It is informative to consider the implications of
the infinite-capacity and the identical-cost assump-
tions made by Parlar and Perry (1996) and Giirler and
Parlar (1997) in relation to our mitigation-contingency
framework. The identical-cost assumption removes
any downside to sourcing mitigation: the firm is com-
pletely indifferent between suppliers if both suppli-
ers are up when an order is placed. The combination
of the identical-cost and infinite-capacity assump-
tions removes any downside to contingent rerout-
ing: if one supplier is down, then the firm has no
cost incentive to postpone ordering until that sup-
plier is back up, nor is there any limitation on
the order quantity it places with the other supplier.
With no downside to sourcing mitigation or con-
tingent rerouting, these two papers cannot (and do
not purport to) offer any insights into the trade-offs
between different disruption-management strategies;
their contribution lies in the proposed solutions to
the inventory-optimization problem. By considering
finite-capacity suppliers that differ in cost, our paper
goes beyond the existing literature by explicitly mod-
eling the trade-offs and limitations inherent in miti-
gation and contingency strategies. This then enables
us to provide insights into the structure of an optimal
disruption-management strategy as well as the factors
that make one strategy preferable over another. We
note that our paper also allows for uncertain demand.

Yield-uncertainty models differ from supply-dis-
ruption models in that there is uncertainty at the
time of order placement as to the fraction of the
order that will be delivered. Much of the literature
on yield uncertainty is focused on single-supplier
models. Our attention in this survey is restricted
to multiple-supplier models. We refer the interested
reader to Yano and Lee (1995) for a comprehensive
review of the yield-uncertainty literature. There is
a limited literature on multiple-sourcing in the con-
text of yield uncertainty. Gerchak and Parlar (1990),
Agrawal and Nahmias (1997), Gurnani et al. (2000),
Dada et al. (2003), Tomlin and Wang (2005), Anupindi
and Akella (1993), Parlar and Wang (1993), and
Swaminathan and Shanthikumar (1999) all investi-
gate supplier diversification in the presence of yield
uncertainty, with the latter three being the only ones
to consider multiperiod problems. The focus of all
these papers is on inventory and sourcing mitiga-
tion. In the single-period problems, contingent rerout-
ing does not arise because no sourcing actions are
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allowed after uncertainty has been resolved; in the
multiperiod problems, the state of a supplier is the
same at the start of each period and so there is no
reason to reroute supply.

The literature on random capacity has a random
upper bound on production in each period and
has typically focused on single-supplier (or machine)
problems, e.g., Ciarallo et al. (1994), Khang and
Fujiwara (2000), and Bollapragada et al. (2004a, b).
One exception is the paper of Kouvelis and Milner
(2002), which allows for multiple suppliers in the con-
text of outsourcing.

All of the multiple-sourcing papers cited above
assume identical lead-time suppliers. Even in the
absence of supply uncertainty, the use of multiple
suppliers can be beneficial if the suppliers differ in
lead times and demand is uncertain (see Fukuda
1964, Moinzadeh and Nahmias 1988, Scheller-Wolf
and Tayur 1998, Sethi et al. 2003, and Feng et al. 2004).

We now turn our attention to the literature on flex-
ibility. We refer the reader to Sethi and Sethi (1990),
Gerwin (1993), and Suarez et al. (1995) for reviews
of flexibility. Mix flexibility, whereby a resource can
produce multiple products, has been widely studied
in the literature, including in Fine and Freund (1990),
Jordan and Graves (1995), Van Mieghem (1998),
Kouvelis and Vairaktarakis (1998), Graves and Tom-
lin (2003), and Tomlin and Wang (2005). Volume flex-
ibility, whereby a resource can temporarily alter its
capacity, has received much less attention.

So-called quantity-flexible or options contracts in
the newsvendor contracting literature (e.g., Barnes-
Schuster et al. 2002) are somewhat related to volume
flexibility. A firm commits to the purchase of a cer-
tain number of units and sets an option reservation
quantity. After some demand uncertainty is resolved,
the firm has the flexibility of exercising some frac-
tion of the reserved options. The firm pays a higher
marginal price in total for reserved units than it does
for committed units. One can think of committed
units as being mitigation inventory and the exercis-
ing of reserved options as being a contingent action.
A key aspect of these models is that the firm itself
chooses the option reservation quantity, and so the
limitation placed on its contingent action is a direct
result of its own earlier decision. Note that there is
no supply uncertainty in these models. The defini-
tion of volume flexibility as the ability to temporarily
adjust capacity fits more naturally in a multiperiod
setting. Tsay and Lovejoy (1999) is the only multi-
period, quantity-flexible contract paper of which we
are aware. Again, there is no supply uncertainty in
their model. Tsay and Lovejoy consider a model in
which a firm can revise previous orders placed with
a supplier. Order revisions (upwards or downwards)
are bounded, and looser bounds are associated with

higher supplier flexibility. Presumably a supplier with
more volume flexibility can offer a higher degree of
revision flexibility in the contract.

Our paper makes a key contribution to the litera-
ture on flexibility by introducing an operational def-
inition of volume flexibility that directly captures a
supplier’s ability to temporarily adjust capacity. Our
model captures two critical dimensions of volume
flexibility—the magnitude of the capacity increase,
and the time it takes for the extra capacity to become
available.

Increased attention is being paid to the consid-
eration of risk in operational decisions, especially
in the context of a single-product newsvendor, e.g.,
Eeckhoudt et al. (1995), Agrawal and Seshadri (2000),
Schweitzer and Cachon (2000), and Caldentey and
Haugh (2004). Sourcing strategies are likely to be
strongly influenced by the firm’s attitudes toward
risk, and so we consider both risk-neutral and risk-
averse decision making in this paper. To the best
of our knowledge, the only other supply-uncertainty
paper that considers risk aversion is Tomlin and
Wang (2005). However, that paper investigates a fun-
damentally different setting: a single-period, yield-
uncertainty problem in which the firm faces trade-offs
between mix flexibility and dual-sourcing. Contin-
gency actions are not considered in that paper.

3. The Model

In our model, the firm operates an infinite-horizon,
periodic-review inventory system with complete back-
logging of unmet demand. Demand in period ¢, D,,
is drawn from a stationary distribution with strictly
positive support. On-hand inventory at the end of a
period costs h per unit, and back orders at the end of
a period cost p per unit.

The firm has two suppliers (U and R) available
to it. Supplier U is unreliable in the sense that it is
either up or down in a period. We assume that sup-
plier U’s failure and repair transitions are such that
supplier U can be modeled as a discrete-time Markov
process. Further assumptions and definitions regard-
ing the Markov process are provided at the end of
this section. Supplier U is assumed to have a con-
stant capacity of v, per period. Production is instanta-
neous, but there is a transit lead time of L >0 periods
before production arrives at the firm. Supplier R is
completely reliable and also has instantaneous pro-
duction and a transit lead time of L periods. The firm
chooses an allocation 0 < w < 1, such that it orders
wD, in every period from supplier R. For its given
allocation w, supplier R provides sufficient capacity to
produce wD; each period. It cannot, however, instan-
taneously ramp up capacity during a disruption to
supplier U. As with Nokia and Chiquita’s suppliers,
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we assume that supplier R can potentially provide
volume flexibility during a disruption. The function
8(7) denotes the volume flexibility profile; if given 7
periods’ notice, supplier R can increase its capacity by
6(t) > 0. We assume that 6(7) is nondecreasing in 7,
and we assume that volume flexibility is only made
available during a disruption. In particular we will
assume the following structure for the volume flex-
ibility function: 8(7) =0 for 7 < 6, and 6(1) =8 >0
for 7 > 6,. We refer to 8 as the flexibility magnitude
and 0, > 0 as the flexibility response time. Our flexibil-
ity profile is then parameterized by (6,, §). Magnitude
and response time are two key parameters of volume
flexibility: “To replace more than two million power
amplifiers, they [Nokia] asked one Japanese and one
U.S. supplier of the same chip to make millions more
each. Largely because Nokia is such an important cus-
tomer, both took the additional order with only five
days of lead time” (Latour 2001).

Units ordered from supplier U cost ¢, per unit.
Supplier R charges c, per unit for its normal alloca-
tion and charges ¢, > ¢, per unit provided from its
volume-flexible capacity. We assume that ¢; > ¢, to
reflect that volume flexibility may be associated with
a higher marginal cost. We also assume that ¢, > c,
so as to ignore the trivial case where single-sourcing
from R is clearly optimal. While the motivating exam-
ples in the introduction discussed disruptions at sup-
pliers external to the firm, our model makes no
assumption as to the ownership of either supplier—
either or both suppliers could be internal or external
to the firm.

All events during period t occur in the following
sequence:

¢ The state of supplier U is observed at the begin-
ning of the period.

* Demand is observed.

* Ordering decisions are made.

¢ Units produced by a supplier in period ¢t — L
arrive.

* Demand is filled (if possible) and holding/back-
order costs are incurred.

e Supplier U’s state transition occurs at the end of
the period.

A number of papers (e.g., Kalymon 1971, Song
and Zipkin 1993, Parlar et al. 1995, and Song and
Zipkin 1996) study Markovian inventory systems in
the context of single-sourcing. The paper by Song and
Zipkin (1996) is particularly relevant, and we lever-
age a number of their results in certain proofs. The
sequence of events above mirrors that proposed by
Song and Zipkin, with the exception that we use the
convention (as in Graves 1988, 1999) that demand is
observed before an order is placed, and so in effect
our lead time is shorter by one time unit.

We define the following variables:

g.: the order placed on supplier U in period t. We
note that g}, =0 if supplier U is down, as there is no
point in placing an order.

g!: the order placed on supplier R’s regular capacity
in period t. By assumption, this is g/ = wD, where
0 <w <1 is the allocation chosen by the firm.

qy: the order placed on supplier R’s flexible capac-
ity in period t. We note that g =0 if supplier U is
up, because flexible capacity is made available only
during a disruption.

x,: on-hand inventory level (positive or negative) at
the end of period t.

z,: inventory position (on hand, on order, and in
transit) at the end of period ¢.

The ordering and inventory/back-order costs in
period t are then given by

¢(4u, 9;.q5) = €u4u + 9, +cpq; and

R 1)
C(x;) =pl—x]" + h[x]*,

respectively. We note that an extension to the case in
which the firm pays inventory-holding costs for units
in transit is easily accommodated. We assume that
there is no cost associated with a volume-flexibility
request, and so the firm will request such a capac-
ity increase during a disruption. As evidenced by
the Ericsson case, however, a firm may not respond
immediately to a disruption at a supplier. We there-
fore assume that the firm does not respond with a
capacity-increase request until the start of period 6,
of a disruption, where 6 >1. For example, if 0p=1,
then the firm responds instantaneously to a disrup-
tion and places a capacity-increase request at the start
of the first period of a disruption, whereas if 0 =2,
then the firm doesn’t place a capacity-increase request
until the start of the second period. We refer to 6, as
the firm’s response time. Given our above assump-
tion about the supplier’s volume-flexibility profile,
the effective flexible capacity available to the firm in
period i of a disruption is then 0 if i < 6, + 6, and 4 if
i> 6, +6,. We define the supply chain response time
as O =0,+9,.

While ordering decisions are tactical in nature, the
allocation decision is strategic. An allocation of w =0
or w =1 indicates the firm single-sources from sup-
plier U or supplier R, respectively. An allocation of
0 < w <1 indicates the firm dual-sources. We note
that even if w =0, the firm may avail itself of sup-
plier R’s volume flexibility if it so chooses. An exten-
sion to the case in which supplier R only makes
flexibility available if w > wg;, > 0 is easily han-
dled. Ordering decisions and allocation decisions are
likely made at different levels of the organization,
with the allocation decisions made at a higher level.
For a given allocation w, we assume that ordering
decisions are made to minimize the long-run average
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cost. The firm, however, may exhibit risk aversion in
making the allocation decision. We consider both a
mean-variance and a conditional value-at-risk (CVaR)
approach in considering risk. Further details regard-
ing these approaches are given in §5.1.

We now specify our assumptions about supplier U’s
discrete-time Markov process. Let i = 0,1,...,
denote the number of periods (including the current
period) for which supplier U has been down. In other
words, i =0 if supplier U is up and i=1,..., 00 if
supplier U is down and was down in each of the
previous i — 1 periods. The probability of a failure
1 - A(0) is assumed to be independent of the num-
ber of periods for which U has been up. The prob-
ability A(i) of a disruption ending after i periods for
which U has been down is assumed to depend only
on i. With these assumptions, supplier U’s failure and
repair process can be modeled as a Markov chain with
state space i =0, 1, ..., co. Let i, denote the state after
a transition from state i > 0; then either i + =0, with
probability A(i), or i, =i+1, with probability 1— A(i).
We note that for i=1,...,00, A(i) is the probability
that a disruption ends after i periods conditional on
it having lasted i — 1 periods, i.e., A(i) is the hazard
rate for the repair process. We assume that the A(i)
are nondecreasing in i for i > 0, i.e., the longer a dis-
ruption has lasted the more likely it is to end in the
current period, a reasonable model for many disrup-
tions. The residual life 7(7) at the start of the ith period
(i > 0) of a disruption is the remaining number of
periods until the disruption ends. The mean residual
life 7(i) is the expected remaining number of peri-
ods until the disruption ends. We note that 7(i) <
1/A(i) and that the increasing hazard rate assump-
tion implies that 7(i) is nonincreasing in i=1, ..., cc.
Steady-state probabilities for the Markov chain are
denoted by (). The cumulative distribution function
for the steady-state probabilities is given by F[i] =
Y oreo (7).

The aim of this research is to provide insights into
the factors that influence a firm'’s optimal disruption-
management strategy. As such, the model should not
be viewed as being designed for decision support. We
have made a number of simplifying assumptions that
merit discussion. We ignore any fixed cost of order-
ing. In essence, we assume that either fixed costs are
negligible or the underlying base time unit is large
enough that it is sensible to place an order in every
period. This latter interpretation is reasonable only so
long as the time scale for disruptions is larger than
the time scale for orders. Our model is appropriate
for firms that order on a daily or weekly basis and are
concerned about disruptions (such as discussed in the
introduction) that may last on the order of weeks or
even months. If fixed costs are such that ordering once
a month is optimal but disruptions are on the scale of

days, then our model is inappropriate. The model is
appropriate for monthly ordering as long as the firm
is primarily faced with the risk of catastrophic disrup-
tions (e.g., Hurricane Mitch), which can cause losses
of supply that may last for months.

We assume equal lead times for both suppliers.
In certain circumstances this is a reasonable approx-
imation of reality. For example, one of Nokia’s alter-
native suppliers to the U.S.-based Philips plant was
also located in the United States. In other circum-
stances, lead times may differ significantly. As men-
tioned earlier, it has been established in the literature
that multiple-sourcing is beneficial if suppliers dif-
fer in their lead times. We note that many of these
papers either make a restrictive assumption that lead
times differ by one unit (e.g., Fukuda 1964) or else
resort to heuristics (e.g.,, Moinzadeh and Nahmias
1988) or simulation-based optimization (Scheller-Wolf
and Tayur 1998) to solve models in which supplier
lead times are not consecutive. Feng et al. (2005)
show that the optimal policy structure is sensitive
to the consecutive lead-time assumption and that
a base-stock policy is no longer optimal when the
assumption is relaxed. A goal of our research is to
provide insight into disruption-management strate-
gies, and we assume equal lead times so as to remove
the nonidentical lead-time motive for dual-sourcing.
All of the dual-sourcing, supply-uncertainty papers
cited earlier make a similar assumption. A decision-
support model might need to incorporate fixed costs
and general lead-time suppliers. Solving such a model
would likely require heuristics or simulation-based
optimization.

In closing this section, we introduce a key lemma
used in a number of later proofs. Consider the fol-
lowing inventory system. Demand in each period is
stochastic but stationary. The demand random vari-
able, denoted by D, has a strictly positive support.
Supply is completely reliable, with a guaranteed lead
time of L > 0. Ordering costs are linear but state
dependent, with ¢(0) = ¢, and c(i) = ¢;, i > 0. The
state space and state transitions are identical to that
described above for supplier U. Using a long-run
average cost criterion, the following results hold for
this inventory system.

LEMMA 1. A state-dependent, base-stock policy is opti-
mal. The optimal base-stock levels y*(i) are such that
y*(i) <yM for i > 1, where yM minimizes E[C(y — DW)],
and DWW is the L-fold convolution of D. y*(i) is nonincreas-
ing in i. If D, = d with probability 1 (i.e., deterministic
demand), then y*(0) > Ld, y*(i) =Ld for 0 <i < i, and
y*(i) = —oo for i > i, where i, is the maximum value
of i such that 7(i) > (c; —c,)/p if #(1) > (¢g—c,)/p and
iy = 0 otherwise. If demand is D, = kD, where k > 0, then
the optimal base-stock levels and the optimal cost are ky*(i)
and kV* respectively, where V* is the optimal cost when
k=1.
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4. A Restricted Model

In this section, we focus on a restricted version of the
model in which we assume that (i) the firm is risk
neutral, (ii) demand is deterministic (equal to 1 with-
out loss of generality), and (iii) supplier U has infinite
capacity. Each of these assumptions will be relaxed
in §5.

4.1. The Optimal Ordering Policy

On a tactical level, the firm needs to determine the
optimal ordering policy. For a given supplier R allo-
cation w, the firm must decide the quantity 4,(0) to
order from supplier U when it is up, and the quan-
tity g,(i) to order from supplier R’s volume flexibility
when supplier U is down, i.e., the timing and quan-
tity of contingent-rerouting orders.

We first consider two extreme cases of volume flex-
ibility: (1) supplier R offers no flexibility, that is,
8(r)=0 for 7=0,...,00; and (2) supplier R offers
instantaneous and infinite volume flexibility, that is,
8(1) = o0 for 7=0, ..., o (in this case we also assume
that the firm responds to a disruption immediately,
ie., 6, =1). We will use the abbreviation II-flexibility to
refer to the instantaneous and infinite-flexibility case.

THEOREM 1. In the zero-flexibility case, a base-stock
policy is optimal for orders placed with supplier U when
supplier U is up. Furthermore, y3(0, w) > L, where
y5(0, w) is the optimal base-stock level. In the II-flexibility
case, a base-stock policy is optimal for orders placed with
supplier U when supplier U is up, and a state-dependent
base-stock policy is optimal for the contingent-rerouting
orders when supplier U is down. Furthermore, y7;(0, w) >
L, yh(i,w)=L for 0 <i <ig, and y;;(i, w)=—oo for
i> i, where y},(i, w) is the optimal base-stock level in
state i.

Demand in each period is 1 and the firm always
orders w from supplier R’s regular capacity. There-
fore, in the Ilflexibility case, ¢,(i) = [y;;(i, w) —
(z(i_) = (1 — w))]* is the rerouting quantity required
in state i to bring the ending inventory position to
at least yj;(i, w), where i_ denotes the state immedi-
ately prior to state i and z(i_) is the ending inventory
position in the prior period. We note that i.;, captures
the trade-off between rerouting and back orders and
that i, increases as the rerouting cost decreases rel-
ative to the back-order cost. The contingent-rerouting
policy has the following properties.

¢ There exists a threshold value i, such that if the
disruption has lasted more than i.; periods, then it
is optimal to wait until the disruption is over rather
than to reroute production, that is, g4(i) = 0 for all
inventory positions if i > 7.

e If the disruption has lasted less than or equal to
i periods and the inventory position is high enough
to prevent a back order L periods from now, then the
firm should not reroute any production.

e If the disruption has lasted less than or equal
to i periods but the inventory position is not high
enough to prevent a back order L periods from now,
then the firm should reroute a sufficient quantity to
prevent any back orders but not so large a quantity as
to build inventory, i.e., it should reroute just enough
to bring its inventory position to L.

We now consider the case of partial flexibility or a
delayed firm response. In this case the firm faces con-
straints on the quantity it can reroute. In particular,
8(i — 05c) =0 for i < O and 8(i — Osc) = 8 for i > O,
that is, it cannot reroute any quantity if i < 6. and
can reroute at most & per period if i > 65.. Recall that
Osc =06, +6,.

THEOREM 2. In the partial-flexibility (or delayed-firm-
response) case, a base-stock policy is optimal for orders
placed with supplier U when supplier U is up, and a mod-
ified state-dependent base-stock policy is optimal for the
contingent-rerouting orders when supplier U is down. If
the firm’s inventory position is below the state-dependent
base-stock level ype(i, w), then it should reroute

q5(i) = min{[yz¢ (i, w) — (z(i—1) = (1-w))]*, 8(i - 6)},

where ype(i, w) =L+ n()[1 —w — 8]t for 0 < i <i,;
Ype(i, w) = —o0 for i > iy n(i) is the maximum integer
n> 0 such that c; —c, < M(i, n) and n(i) is defined only
for 0 <i <i; M(i,n) =(p + h)P[r(i) = nlr(i + n) —
hr(i); and P[r(i) > n] is the probability that the residual
life is at least n periods.

Note that n(i) > 0 as i < i, and that the n(i)
are nonincreasing in i. This theorem states that dur-
ing a disruption, the firm attempts to reach a state-
dependent base-stock level, but it may not be able to
do so because of the volume-flexibility capacity con-
straint. We see again that it is not optimal to reroute
if i > iy In the II-flexibility case, the optimal base-
stock level is L for 0 < i < i, the logic being that
contingent rerouting is perfectly reliable, demand is
constant at 1, and the lead time is L. With partial flex-
ibility, this result still holds if § > 1 — w, the intuition
being that if the inventory position is above L and
the flexible capacity has come online, the firm should
not yet reroute as it has sufficient capacity to always
keep the inventory position at L if it so chooses. The
rerouting policy differs, however, if § <1 — w. In this
case, the extra capacity 6 is not sufficient to compen-
sate for the lost supply 1 — w, and so the firm may
reroute lost production before its inventory position
falls below L so as to prevent future back orders that
result from the rerouting-capacity constraint. Rerout-
ing before the inventory position falls below L means
that the firm will incur additional inventory costs
until the inventory position falls below L but will
reduce the back orders incurred after that point. This
trade-off is reflected in the M(i, n) function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permissionyywww.manaraa.com



Tomlin: Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks

646

Management Science 52(5), pp. 639-657, ©2006 INFORMS

If i, =0, then the firm never reroutes lost pro-
duction in any state, i.e., the contingency strategy
is never used to manage disruption risk. However,
iy >0 does not imply that a contingency strategy
is necessarily used; the optimal base-stock level in
state 0 might be sufficient to last beyond i, in which
case rerouting will not occur.

4.2. The Optimal Base-Stock Level When
Supplier U Is Up

Having characterized the optimal ordering policy,
we now proceed to develop the long-run average
cost expression as a function of y(0,w) and w.
Recall that y(0, w) is the base-stock level when sup-
plier U is up, and w is supplier R’s allocation. Letting
y(0, w) =1, + L, we will develop the long-run average
cost expression as a function of I, and w. We will then
optimize for the base-stock level and supplier R’s allo-
cation. In what follows, we will at times use the term
“average” in place of “long-run average.” The aver-
age cost can be written as

Cira = Culirally, W) +c,qira(ly, w) + CM[RA (o, w)
+ hlfra(ly, w) + pliga(ly, w), )

where for a given base stock y(0, w) =1I,+ L and sup-
plier R allocation w,
* gira(ly, w) is the average quantity per period
sourced from supplier U,
* gira(ly, w) is the average quantity per period
sourced from supplier R’s regular capacity,
qLR a(lp, w) is the average quantity per period
sourced from supplier R’s flexible capacity,
* Ira(ly, w) is the average (nonnegative) on-hand
inventory level, and
® Iza(ly, w) is the average back order level.
We note that g4 (I, ©) +qra(ly, ©) +q/pa(l, 0) =
1 and that gjz,(I,, w) = w by definition. Therefore,
Equation (2) can be rewritten as

)i rally, W)
W) + pliga(ly, w). 3)

As detailed in Appendix A2 (in the online sup-
plement), we can use the renewal reward theorem
to derive the following expressions for the average
quantities:

CLRA =0y 51 (Cr . Cu)w § S (Cf 5
& hI{RA(IO/

airallo, w) = Y g5 (i) (i), 4)
i=1
IL+RA Iy, w)

oo

=1077(0)+Z[1—11— +qu(k)] @), ()

i=1
o0

%Ah@th—m—w+Z%®Tﬂﬁ ®)
k=1

=1

These long-run average expressions are in fact the
steady-state expected values, and so the long-run
average cost is equal to the steady-state expected cost.
The quantity rerouted in state i, g,(i), depends on the
volume-flexibility profile. Expressions for qLR Ay, w),

Lrally, w), and I;z,(I,, w) tailored to the volume-
flexibility profile assumed in this paper can be found
in Appendix A2 (in the online supplement).

We now define two key variables that influence the
optimal base-stock level:

. = P
i=r

0, if (c; —c,)m(1) < hF[0]

ey such that (c; —c,)m (i) > hF[i — 1],
f u

otherwise.

Both i} and ig refer to numbers of periods and cap-
ture different trade-offs facing the firm. The trade-
off between inventory and back orders is captured
by ii. We note that i} increases as inventory becomes
cheaper relative to back orders. One can think of i}
as a newsvendor-type variable. In fact, as shown
below, i} is the number of periods’ coverage provided
by the optimal base stock in the zero-flexibility case.
The trade-off between inventory and rerouting is cap-
tured by i;. It is cheaper for the firm to carry an addi-
tional unit of inventory than to reroute in period i of
a disruption if i <ig. Note that 75 increases as inven-
tory becomes cheaper relative to rerouting. As noted
earlier, the trade-off between back orders and rerout-
ing is captured by i.;. For a given allocation w, the
optimal base-stock level y*(0, w) = Ij(w) + L is speci-
fied by the following theorem for all values of Gf, 0,,
and &. Recall that 0sc =0 +0,.

TaeorEM 3. If w =1, then Ij(w) =0. If w <1, then

laip < max{bsc, i} = I[(w)=ij(1-w),
It = max{fsc,ij}, 6<1—-w

if(1—w),
=

if if <Osc,
w) +n(ig)(l —w—98) -8,
otherwise,

= [(w)=

. "
iaie = Mmax{fsc,ij}, 6>1—w

is(l1—w), ifig>0,c—1,
= Lj(w)=1i(1—-w), ifig<6s—1and i{gf(w),
I(w), otherwise,
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where i = max{0s-, is+ 1},

[(0sc -1)(1-w) ]
— (6= (1= w)) (i — 85c) |

. ( (h+p)F[i(w)] = pFligs — 1]
J ( ~(es - c,,>vr<z;m>) e
(Osc —D)(1-w),

Ip(w) = i ((h+p)F[05c—1] —pF[Osc]> <0
ey~ c)m(Osc+1) ) =

maximum I, such that

((h+P)F[T(Iof w)]=pF[N (L, w)—1] ) >0
—(cg—c,)m(N(,w)) ) =

otherwise,
and
T(,, w) = | —2
(Olw)—tl_wa
(6sc —1)(1-w) -1,
o1+ | g0,
N(,, w) = T (), w) < O — 1
T(L, w)+2, T(l, w) > 05c —1,
5w) =[[(osc — 1)1 = w) = (8= (1= ) (igyy = B0)]* J
(1-w)

4.3. The Optimal Sourcing Strategy
We now proceed to determine the optimal sourc-
ing strategy. Recall that w* =1 implies that the firm
single-sources from supplier R, 0 < w* <1 implies the
firm dual-sources, and w* =0 implies the firm single-
sources from supplier U.

We first consider the two extreme cases of volume
flexibility: II-flexibility and zero flexibility.

THEOREM 4. Single-sourcing is optimal in both cases,
that is, wj; € {0,1} and w} € {0,1}. If single-sourcing
from supplier U is optimal for the zero-flexibility case,
then it is also optimal for the Il-flexibility case, i.e.,
wy =0= w}; =0. If single-sourcing from supplier R is
optimal for the II-flexibility case, then it is also optimal for
the zero-flexibility case, i.e., wj,=1= w;=1.

This theorem tells us that an extreme sourcing strat-
egy is optimal at both ends of the flexibility profile.
Does this extreme result hold for intermediate flexi-
bility regimes? To answer this question, we now con-
sider the case in which supplier R offers only partial
flexibility and/or the firm does not respond instan-
taneously to a disruption. Define E,(i) = }_,_, 7m(7),
Ey(i) = X0, 7(r), Ky(i) = Ey(i) — iF[i], and Ky(i) =
E,(i)—i(1— F[i]). The optimal sourcing strategy for the
case of partial flexibility (or delayed firm response) is
given in the following theorem.

THEOREM 5. If if > i, (that is, rerouting is too expen-
sive relative to inventory), then volume flexibility is never
used and single-sourcing is optimal, i.e., w* € {0, 1}, with

w'=0 < ¢, 2¢,— hK\(i}) +pK(i]).  (7)

If i} <i, but Osc > i, (that is, the supply chain response
time is too slow and/or rerouting is too expensive rela-
tive to back orders), then volume flexibility is never used
and single-sourcing is optimal, i.e., w* € {0, 1}, with Equa-
tion (7) again determining the optimal supplier choice. If
iy < iy, and Osc < i (that is, rerouting is a viable option
both in terms of cost and supply chain response time), then
the optimal sourcing strategy depends on both the supply
chain response time Os- and the flexibility magnitude & in
the manner specified by Table 2.

If dual-sourcing is optimal, then w* > [1 — 8}*, that
is, the firm chooses an allocation such that the magni-
tude of flexibility is sufficient to prevent (if it chooses
to) any further increase in back orders once flexi-
bility becomes available. We segmented the sourcing
strategy by the flexibility parameters, as this gave
the cleanest segmentation. Of course, other parame-
ters influence the optimal allocation, either indirectly
through their influence on i}, is, and i, or directly
through their influence on the purchasing costs. In
numerical tests, the behavior of w* with respect to
model parameters was as one would expect, e.g., sup-
plier R’s allocation was increasing in the back-order
cost p and inventory-holding cost & and decreasing in
its relative cost c,/c, and supplier U'’s reliability [as
measured by 7(0), the steady-state probability that U
is up]. Supplier R’s allocation was found to be par-
ticularly sensitive to relative cost and reliability. We
also found that supplier R's allocation decreased in
the level of flexibility it offered, as flexibility allows
the firm to engage in contingent rerouting rather than
mitigation sourcing (i.e., routine sourcing from sup-
plier R). Suppliers are therefore advised to be cautious
about offering flexibility.

4.4. The Optimal Disruption-Management
Strategy

Having characterized the optimal rerouting, inven-

tory, and sourcing decisions for the firm, we now

proceed to use these results to characterize the set

Table2  Optimal Sourcing Strategy When i; < ., and 05, < i
Flexibility magnitude
Response time Low (i.e., 6 <1) High (i.e., 6> 1)

Intermediate response Single- or dual-source

(i.e., Osc > is+1) we=0o0r1-8<w <t
Fast response

(i.e., Osc <is+1)

Single- or dual-source
0O<w* <1

Single- or dual-source
w*e{0,1-6,1}

Single-source
w* e (0,1}
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of possible optimal disruption-management strate-
gies for the three flexibility cases: zero flexibility,
II-flexibility, and partial flexibility (see Table 3). Note
that the contingency strategy (rerouting) is not avail-
able to the firm in the zero-flexibility case, and so
mitigation (either through inventory or supplier R
sourcing) is the only option for actively managing the
disruption risk in that situation. We proved above that
single-sourcing is optimal in the zero-flexibility and
II-flexibility cases, and therefore a mixed mitigation
strategy of partially sourcing from supplier R and car-
rying inventory cannot be optimal in those cases.

The impact of the various costs on the attractive-
ness of a given strategy are as one would expect.
Mitigation (through either sourcing from supplier R
or carrying inventory) becomes less attractive as the
relative cost of supplier R (c,/c,) increases or as the
cost of inventory h increases. Contingent rerouting
becomes less attractive as the premium c;/c, paid
for volume-flexible units increases. Of more interest
is the impact that supplier reliability and expected
disruption length have on the optimal disruption-
management strategy. We measure supplier U relia-
bility by the percentage of time that supplier U is
up, ie, m(0). A given percentage uptime can result
from frequent but short disruptions or from rare but
long disruptions. We therefore classify disruption pro-
cesses by their expected lengths. We assume the fol-
lowing structure for the disruption process in the
numeric examples that follow: a disruption lasts for
a minimum of M periods, after which there is a
constant probability A,, of the disruption ending in
each period. In other words, a disruption length is
the sum of a constant and a geometric random vari-
able. Table 4 describes the labeling scheme used in
Figures 1 to 3.

For the zero-flexibility case, we present the three
optimal disruption-management strategies as a func-
tion of supplier U’s percentage uptime and the

Table 3 Possible Optimal Disruption-Management Strategies
Flexibility profile

Disruption-management strategy Zero Il Partial
Acceptance Yes Yes Yes
Mitigation only

Inventory Yes Yes Yes

Sourcing exclusively from R Yes Yes Yes
Contingency only

Rerouting No Yes Yes
Mitigation and contingency

Inventory and rerouting No Yes Yes

Inventory and partially sourcing from R No No Yes

Rerouting and partially sourcing from R No No Yes

Inventory, rerouting, and partially sourcing No No Yes

from R

Table 4 Labeling Scheme for Disruption-Management Strategies

Label Strategy Description

A Acceptance The firm passively accepts the disruption risk.
It sources exclusively from the unreliable
supplier and carries no inventory.

IM  Inventory mitigation The firm sources exclusively from the
unreliable supplier but carries some
inventory to mitigate disruptions.

SM  Sourcing mitigation The firm sources exclusively from the
reliable supplier.

CR  Contingent rerouting The firm sources exclusively from the
unreliable supplier when that supplier is up.
The firm carries no inventory, but it
reroutes to the reliable supplier during
a disruption.

IMCR Inventory mitigation The firm sources exclusively from the

and contingent unreliable supplier when that supplier

rerouting is up. The firm carries some inventory to
mitigate disruptions, but during a disruption
it may also reroute production to the
reliable supplier.

expected disruption length for the following set of
parameters: ¢, =1, ¢, = 1.05, p = 0.15, h = 0.0015,
Ay = 0.1, L =0 (Figure 1). For a given percentage
uptime, the expected disruption length was varied
by changing M. An increase in the expected disrup-
tion length reduces the probability (or frequency) of a
disruption. Disruptions are frequent but short at the
bottom left of the figure, and very rare but very long
at the top right. While the relative sizes of the various
regions changed as we varied the model parameters,
the relative positioning of the regions did not. We see
in Figure 1 that acceptance is the optimal strategy
if supplier U has a very high percentage uptime. It
can be shown in general that acceptance is optimal if
and only if w(0) > p/(p+h) and ¢, > ¢, +p Y2, 7 (7);
that is, the percentage uptime is at least as large as

Figure 1 Optimal Disruption-Management Strategies for
Zero-Flexibility Case
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Figure 2 Optimal Disruption-Management Strategies for Il-Flexibility
Case (¢, =2.5¢,)
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a newsvendor fractile and the reliable-supplier cost
is at least as large as the unreliable-supplier cost
plus expected back-order costs. Acceptance is there-
fore favored in environments of high supplier relia-
bility, with the definition of “high” being dependent
on the costs of mitigation and the cost of back orders.
For a given percentage uptime, inventory mitigation
is favored if disruptions tend to be short (and hence
more frequent), but sourcing mitigation is favored if
disruptions tend to be long (and hence less frequent).
The reason that sourcing mitigation is favored over
inventory mitigation as disruptions become longer
and less frequent is that more inventory is required
in such environments, and so inventory mitigation
becomes less attractive. Carrying high amounts of
inventory for rare events is not an attractive strategy if

Figure 3 Optimal Disruption-Management Strategies for Il-Flexibility
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another mitigation option (in our case, sourcing from
supplier R) is available.

Mitigation is the only available strategy in the zero-
flexibility case, but contingent rerouting is available
when supplier R provides volume flexibility. While
contingent-rerouting costs more than regular pro-
duction, i.e., =6 >0, the benefit of the contin-
gency strategy is that the firm only incurs the higher
contingent-rerouting cost during a disruption. With
mitigation strategies, the firm incurs a cost (either
inventory or the higher supplier R sourcing cost)
even when supplier U is up. One might therefore
expect that a contingency strategy would be preferred
if disruptions are rare events, i.e., if the probabil-
ity of supplier failure is very low. The story, how-
ever, is somewhat more nuanced than this. Using the
same parameters as above, we present the optimal
disruption-management strategy for the II-flexibility
case when the relative rerouting cost is very high,
ie., ¢y =25c, (see Figure 2) and when it is lower,
ie., ¢; =1.25¢, (see Figure 3). We see from Figure 2
that a contingency strategy can be optimal even for
a very high rerouting cost. As the rerouting cost
decreases, contingent rerouting (either in isolation or
combined with inventory mitigation) is preferred over
a larger region. Again, while the relative sizes of
the various regions vary as parameters change, the
relative positioning of the regions does not. Contin-
gent rerouting becomes less attractive as supplier U’s
percentage uptime decreases (for a given expected
disruption length), the reason being that the bene-
fit of the contingent-rerouting strategy decreases as
the higher contingency-rerouting cost is incurred a
greater percentage of the time. Sourcing mitigation
is never optimal in the II-flexibility case if ¢; =¢,,
as contingent rerouting is no more expensive than
mitigation sourcing but is incurred less frequently.
Contingent rerouting also becomes less attractive as
the expected disruption length increases (for a given
supplier U percentage uptime). Eventually mitiga-
tion, either through inventory or routine sourcing
from supplier R, becomes optimal as the disrup-
tion length increases. This indicates that a mitiga-
tion strategy is preferred to the contingency strategy
when the frequency of disruption is very low, a result
that might seem counterintuitive. The reason for this
again lies with the fraction of time the contingent
cost is incurred. Whereas the percentage downtime is
constant for a given percentage uptime, the percent-
age of time spent rerouting is not constant; it depends
on the expected disruption length. Recall from The-
orems 1 and 2 that the use of contingent rerouting
depends on the residual life of a disruption. As the
expected disruption length increases, the firm spends
more time in states in which rerouting is optimal, and
hence the relative benefit of the contingency strategy
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decreases until a point is reached at which mitigation
becomes optimal.

We see from Figures 1, 2, and 3 that the optimal
disruption-management strategy depends on whether
volume flexibility is available. Volume flexibility en-
ables a contingency strategy, and a contingency strat-
egy can be preferable to a mitigation (or acceptance)
strategy. Does volume flexibility significantly reduce
a firm’s long-run average costs? In Figures 4 and 5
we illustrate the relative cost reduction achieved by
II-flexibility (over zero flexibility) as a function of sup-
plier U’s percentage uptime and the expected dis-
ruption length using the same parameters as in Fig-
ures 2 and 3. The relative cost reduction is zero in
regions where contingent rerouting is not an optimal
strategy, and so the three-dimensional surface graphs
reflect the regions illustrated in Figures 2 and 3. In the
regions where contingent rerouting is optimal, we see
that II-flexibility can result in a cost reduction of 3%—
4%. This is a reduction in the overall costs (including
procurement) and not simply a reduction in inven-
tory and back-order costs. As such, this is a significant
reduction. In fact, if one could make supplier U per-
fectly reliable in the zero-flexibility case, then the max-
imum savings from doing this would be 4.76% (as the
reliable-supplier cost of 1.05 places an upper bound
on the possible long-run average cost when supplier
U is unreliable). We therefore see that the availabil-
ity of Il-flexibility is almost as beneficial as perfect
supplier reliability even when the cost of exercising
that flexibility is expensive. Note that as the rerout-
ing cost decreases to ¢; = c,, the relative cost reduc-
tion increases and the region in which those reductions
occur also grows.

[I-flexibility is unlikely to exist for most firms,
either because suppliers do not offer it (e.g., Nokia’s
suppliers took five days to increase production) or
because the firm does not respond instantaneously to
a supplier disruption (e.g., Ericsson did not respond

Figure 4
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Figure 5 Cost Reduction Arising from II-Flexibility (¢, = 1.25¢,)
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with contingent-rerouting requests until several of
weeks after the disruption). Partial flexibility is a more
reasonable model of the reality most firms face. It
is of interest to understand how quickly the bene-
fits of Il-flexibility decrease as flexibility decreases.
Recall that we parameterize supplier flexibility by the
magnitude § and the response time 6,, and that flex-
ibility decreases as the magnitude decreases or as
the response time increases. In Figure 6 we present
exchange curves (or contours) for magnitude and
response time for three different expected disruption
lengths (expressed in numbers of periods). The con-
tours specify the percentage (from 10% to 90%) of the
II-flexibility benefit that is delivered by partial flexi-
bility. An uptime percentage of 97% was chosen and
the same cost parameters as in Figure 3 were used.
Two observations are noteworthy, as they were
observed in many other numeric examples. First, for
very high magnitudes, the performance of partial
flexibility is more sensitive to response-time degra-
dation when the expected disruption length is low.
This reflects the fact that the extra capacity is of
little value if a disruption is nearly over by the
time capacity becomes available. Second, the trade-
off between magnitude and response is more extreme
when disruptions are short (and hence more frequent)
in nature: for high response times, a large increase in
magnitude is needed to offset a small degradation in
response time (again this reflects the fact that magni-
tude is of little value if it becomes available when a
disruption is nearly over), but for low response times,
a very small increase in magnitude offsets a large
degradation in response time (this reflects the fact that
inventory can compensate for an increase in response
time, and as discussed above, carrying inventory is
relatively less expensive when disruptions are short
and frequent rather than long and rare). Measur-
ing response time relative to the expected disrup-
tion length, we found that for very high magnitudes
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Figure 6 Partial Flexibility Exchange Curves for a 97% Uptime Percentage as Expected Disruption Length (EDL) Increases
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the performance of partial flexibility is more sensi-
tive to the relative response time when the expected
disruption length is greater. This observation again
reflects the fact that inventory can compensate for an
increase in response time. As inventory is unattractive
when disruptions are long and rare, inventory is less
effective at compensating for an increase in relative
response time.

In closing we mention that all the above figures
assume instantaneous firm response time, i.e., Bf =0.
For a noninstantaneous firm response time, the flex-
ible capacity becomes available after the sum of the
firm’s response time and the supplier’s response time,
ie., Of +6,, and so one can still use the above figures
by interpreting the response time to be the combined
response time.

4.5. The Impact of Misestimating Supplier
Reliability

Our model assumes that the firm can accurately char-
acterize the reliability of a supplier. In practice, a firm
may have to estimate a supplier’s reliability when
choosing a disruption-management strategy. We con-
ducted a numeric study to investigate the impact
of parameter misestimation on the long-run average
cost. We assumed the same disruption structure as
in the earlier numeric examples, namely a disruption
length that is the sum of a constant plus a geomet-
ric random variable. Recall that the model assumes

0 L
1.00 075 050 025 O
Flexibility magnitude

0 1
1.00 075 050 025 O
Flexibility magniture

a constant probability of failure when supplier U is
up. In our study, we focused on the misestimation
of the failure probability, and assumed that the firm
could accurately estimate repair probabilities. There
is a one-to-one relationship between the failure prob-
ability and supplier U’s uptime percentage (for a
given disruption process), and we therefore use the
uptime percentage as the parameter that the firm esti-
mates. For each problem instance we assumed that
the true uptime percentage was 97% but that the
firm’s estimate of the uptime percentage could devi-
ate from the true value by as much as +3%. We solved
for the firm’s optimal strategy given its estimate of
the uptime percentage and then calculated the actual
long-run average cost of the resulting strategy given
the true uptime percentage. The impact of uptime
misestimation was then measured by the percentage
increase in long-run average cost resulting from the
incorrect estimate. We fixed the holding cost h at
0.0015, the unreliable-supplier cost ¢, at 1, the flexi-
bility premium c,/c, at 1.05, the firm response time
Of at 1, and the lead time L at 1. We conducted a full-
factorial study for the parameters listed in Table 5.
In Table 6 we present the percentage cost increase
(over all the relevant instances) resulting from sup-
plier uptime misestimations for zero flexibility and
II-flexibility (6 =1, 6, = 0). While misestimation can
significantly increase costs (with the cost increase
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Table 5 Parameters Used in Misestimation Study

Parameter Values used in study

Flexibility magnitude, & 0 0.25 050 0.75 1.00
Flexibility response time, 6, 0 3 6 9 12
Reliable-supplier cost, ¢, 1.02 1.04 1.06

Back-order cost, p 0.05 0.10 0.15

Expected disruption length 11 16 31

being as high as 7.36% in one case), II-flexibility sig-
nificantly reduces the negative effect of misestimation.
In addition to reducing a firm’s long-run average cost,
volume flexibility results in a disruption-management
strategy that tends to be more robust to parameter
misestimation. We observed the following results in
the numeric study. The cost increase due to overesti-
mation was typically higher than the cost increase due
to underestimation. There were, however, instances
for which the reverse was true—underestimation
tended to result in a larger cost increase than overes-
timation when the back-order cost was low. The cost
increase arising from misestimation increased as the
back-order cost increased and as the expected dis-
ruption length increased. The cost increase typically
decreased as the flexibility magnitude increased and
as the flexibility response time decreased, but there
were some instances in which flexibility amplified the
misestimation penalty.

5. Extensions to the Restricted Model
We now relax three key assumptions of the restricted
model: risk neutrality, deterministic demand, and infi-
nite supplier U capacity. Unless otherwise stated, we
assume instantaneous lead times (L = 0) in all that
follows.

5.1. Risk Aversion in the Allocation Decision

Up to this point we have assumed that the allocation
decision w is made with an objective of minimizing
the long-run average cost. We now relax this assump-
tion by allowing for risk aversion in the allocation
decision.

Table 6 Average and Maximum Percentage Cost Increases Due to

Uptime Misestimation

Percentage uptime misestimate

-3.0% -20% -1.0% 0% 1.0% 20% 3.0%
Zero flexibility
Average 0.25 0.18 0.05 000 013 1.07 174
Maximum 0.81 0.81 017 0.00 1.03 500 7.36
|I-flexibility
Average 0.02 0.01 0.01 0.00 0.01 040 0.3

Maximum 0.12 0.07 0.07 0.00 0.07 084 1.14

Using a mean-variance approach, we consider a
firm that is concerned with both the expectation C(w)
and variance V(w) of the steady-state distribution of
costs for a given allocation w. Recall that the long-
run average cost was shown to equal the steady-state
expected cost per period. A common mean-variance
objective is to minimize C(w) + nV(w) where n >0
is a variance penalty. Multiplying this objective by
1/(1+mn), we obtain an equivalent objective function

(w, B)=(1-B)C(w)+BV(w), 0=B=1, (8)

where B =n/(1+47) is the relative variance penalty.
At B =0 the firm minimizes the expected cost per
period, and at B =1 the firm minimizes the variance
of costs. Let w*(B) minimize II(w, B).

THEOREM 6. For any flexibility profile (0,, 8), w*(B) is
nondecreasing in B3, that is, a higher allocation is sourced
from supplier R as the relative variance penalty increases.

We proved above that single-sourcing is optimal in
the zero-flexibility and II-flexibility cases for a risk-
neutral firm. This result is no longer true under a
mean-variance objective. We observed in numerical
tests that the optimal allocation, and hence the opti-
mal disruption-management strategy, was sensitive to
the variance penalty. In Figure 7 we present the opti-
mal disruption-management strategies for both the
risk-neutral and mean-variance objectives as a func-
tion of supplier U’s percentage uptime and the dis-
ruption length for the zero-flexibility case using the
following set of parameters: ¢, =1, ¢, =1.05, p =0.15,
h =0.0015, A;, =1, and B = 0.05. We use the same
labeling scheme as described earlier in Table 4, but
there is now an additional strategy, labeled MPSI,
which is mitigation through partial sourcing from
supplier R and carrying inventory. In this strategy,
the firm sources from both suppliers if there is no
disruption and also carries inventory to mitigate dis-
ruptions. There is a large region in which inventory
mitigation (IM) is the optimal strategy in the risk-
neutral setting. In contrast, MPSI is the dominant
strategy for the mean-variance objective. We note that
the fraction sourced from supplier R increases in the
disruption length and decreases in supplier U’s up-
time. As with the risk-neutral case, single-sourcing
from supplier R becomes optimal as disruptions
become longer (and hence more rare) for a given sup-
plier U percentage uptime.

Arguably, a mean-variance approach is inappropri-
ate for firms facing situations in which there are rel-
atively small probabilities of severe events, i.e., very
rare but very long disruptions. In such cases, the firm
might wish to minimize expected cost subject to some
constraint on downside risk. A CVaR approach can be
used to handle such situations. We refer the reader to
the unabridged version of this paper for a treatment
of the CVaR approach.

Further reproduction prohibited without permissionysapnw.manaraa.com



Tomlin: Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks

Management Science 52(5), pp. 639657, ©2006 INFORMS

653

Mean variance

Figure 7 Optimal Disruption Strategies for Risk-Neutral and Mean-Variance Objectives
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5.2. Stochastic Demand

Because single-sourcing is optimal in the zero-flexi-
bility and II-flexibility cases for the restricted model,
a mixed mitigation strategy of partial sourcing from
supplier R and carrying inventory cannot be opti-
mal for these cases. Demand is deterministic in the
restricted model, and this raises the possibility that
a mixed mitigation strategy might be optimal if
demand is stochastic. Because we already know that
partial sourcing can be optimal for a risk-averse firm,
we restrict attention to a risk-neutral firm to focus
attention on the impact of demand uncertainty on the
optimal sourcing (and hence disruption-management)
strategy.

TueOREM 7 (II-FLEXIBILITY). (a) For a given supplier R
allocation w, a state-dependent base-stock policy is optimal.
The optimal base-stock levels are y3;(i, w) = (1 — w)y*(i),
where y*(i) is the same as in Lemma 1. The y},(i, w) are
nonincreasing in i. (b) Single-sourcing is optimal, that is,
w* {0, 1}.

A zero-flexibility system is equivalent to an II-flex-
ibility system with ¢, = co. This observations leads
directly to the following theorem.

THEOREM 8 (ZERO FLEXIBILITY). (a) For a given sup-
plier R allocation w, a base-stock policy is optimal for
supplier U orders when it is up. The optimal base-stock
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level is y3(0, w) = (1 — w)yZ (0), where y?.(0) is the base-
stock level in Lemma 1 if c; = co. (b) Single-sourcing is
optimal, that is, w* € {0, 1}.

The single-sourcing result for the zero-flexibility
and II-flexibility cases therefore still holds even if
demand is stochastic. The fact that the single-sourcing
result is preserved under stochastic demand means
that a mixed disruption-management strategy (par-
tial sourcing from supplier R and carrying inventory)
cannot be optimal for these two extreme flexibility
cases in the stochastic-demand case. Note thatif L > 0,
then the firm might hold inventory even if it single-
sources from supplier R. Such inventory would, how-
ever, be held for the sole purpose of protecting against
demand uncertainty as there is no supply uncertainty
if the firm single-sources from supplier R.

In closing we note that the optimal supplier choice
is not necessarily the same for the zero-flexibility and
II-flexibility cases. Define w}, and w? as the optimal
supplier R allocation for the II-flexibility and zero-
flexibility cases respectively.

CoroLLARY 1. w3y =0= w}, =0. w};=1=> wj =1

So, if single-sourcing from supplier U is optimal
for the zero-flexibility case, then it is optimal for the
II-flexibility case. Likewise, if single-sourcing from
supplier R is optimal for the II-flexibility case, then it
is optimal for the zero-flexibility case.
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5.3. Finite Capacity at Supplier U

Supplier U capacity is assumed to be infinite in
the restricted model, with the consequence that sup-
plier U can immediately recover any lost production
once a disruption ends. This in turn means that the
firm is able to fully replenish its mitigation inven-
tory before any new disruption can occur. The results
of the restricted model all go through if supplier U
has sufficient capacity to immediately recover any
lost production. Immediate recovery is, however, a
strong assumption, and in this section we investi-
gate the impact of supplier U’s capacity v, on the
firm’s optimal disruption-management strategy. We
focus attention on the zero-flexibility case, for which
single-sourcing was proven to be optimal when sup-
plier U had infinite capacity. We make the following
assumptions:

¢ Risk neutrality in the allocation decision, as
we know that risk aversion can make dual-sourcing
optimal.

* Zero fixed cost of ordering, and so the base time
unit is infinitesimal (continuous-time model).

e Constant demand rate d (d = 1 without loss
of generality), as we know that stochastic demand
does not alter the single-sourcing result for the zero-
flexibility case.

¢ Exponentially distributed uptimes, with rate A,
(up to down).

» Exponentially distributed downtimes, with rate
A4 (down to up).

The allocation w is the order rate placed with sup-
plier R. Supplier R provides a capacity v, so that it can
produce at a rate of w and no higher (because there is
zero flexibility). As supplier R is perfectly reliable, we
are then left with a single unreliable-supplier system
with demand rate of 1 —w. The long-run average cost
is then given by

Crra(w) =c,w+c,(1-w)+ ] (w), )

where ] (w) is the optimal long-run average inven-
tory /back-order cost for a single-supplier system with
demand 1 — w and capacity v,,.

THEOREM 9. The firm must source a minimum of

+
vz
/\du +/\ud

from supplier R for the system to be stable. The optimal
ordering policy is a modified base-stock policy. If supplier U
is up, then the optimal order rate for supplier U is

u 1-w, fx=y"0,w)
"l Fr<yow,

where x, is the inventory at time t. The optimal base-stock
level y*(0, w) is given by

y*(0, w)
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The optimal allocation w* is nonincreasing in v,,.

We proved above that single-sourcing is optimal in
the zero-flexibility case when supplier U has infinite
capacity. This result is no longer true when supplier U
has limited capacity. We observed in numerical tests
that the optimal allocation, and hence the optimal
disruption-management strategy, was sensitive to the
supplier U’s capacity. In Figure 8 we present the opti-
mal disruption-management strategies for both the
infinite-capacity and finite-capacity cases as a function
of percentage uptime and expected disruption length
for the following set of parameters: ¢, =1, ¢, = 1.1,
p=0.15, h =0.0015, A, =0.1, and v, = 1.5. We use the
same labeling scheme as before, but there is now an
additional strategy, labeled MPS, which is mitigation
through partial sourcing from supplier R. In this strat-
egy, the firm sources from both suppliers if there is no
disruption but does not carry inventory to mitigate
disruptions. There is a large region in which IM is the
optimal strategy for the infinite-capacity case. In con-
trast, mitigation through partial sourcing from sup-
plier R and carrying inventory (MPSI]) is the dominant
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Figure 8
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strategy in the finite-capacity case. Capacity influ-
ences a supplier’s ability to recover from a disruption,
and a supplier’s ability to recover has a large impact
on the firm’s optimal disruption-management strat-
egy. We observed that the fraction sourced from sup-
plier R increases in the expected disruption length for
a fixed supplier U's percentage uptime. This reflects
the fact that recovery takes longer when disruptions
are longer. We also observed that the fraction sourced
from supplier R decreases in supplier U percentage
uptime for a fixed expected disruption length. This
reflects the fact that supplier U spends less time in
recovery mode as its percentage uptime increases.

6. Conclusions

An effective disruption-management strategy is a nec-
essary component of a firm’s overall supply chain
strategy. Firms that passively accept the risk of disrup-
tions leave themselves open to the danger of severe
financial and market-share loss, as evidenced by the
Philips Semiconductor and Hurricane Mitch disrup-
tions discussed in the introduction. Active disruption-
management strategies rely on mitigation and/or con-
tingency actions. In this paper, we have focused on the
supply-side tactics available to a firm: sourcing mitiga-
tion, inventory mitigation, and contingent rerouting.
We established that, along with cost, supplier charac-
teristics such as percentage uptime, disruption length,
capacity, and flexibility, and firm characteristics such
as risk tolerance, play a large role in determining

Optimal Disruption Strategies for Infinite-Capacity and Finite-Capacity Cases
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the firm’s optimal disruption-management strategy.
Percentage uptime and disruption length influence
the optimal disruption-management strategy through
their impact on the frequency and level at which mit-
igation and contingency costs are incurred. Capacity
plays an important role through its effect on a sup-
plier’s recovery time in the aftermath of a disruption.
Volume flexibility can substantially benefit the firm, as
it enables contingent rerouting to be an element of the
firm'’s strategy, and this can significantly reduce the
firm’s costs. We showed that inventory mitigation was
not an attractive strategy in an environment of rare
but long disruptions, as significant quantities of inven-
tory need to be carried for extended periods without a
disruption. This result is at least partly driven by the
assumption of a constant probability of failure. In cer-
tain circumstances, for example labor disputes, a firm
may have advance warning that a disruption is more
likely. Such advance information then allows the firm
to build mitigation inventory in advance of a potential
disruption rather than carrying mitigation inventory
continuously. The role of advance information in dis-
ruption management is the focus of ongoing research.

In closing, we note that the operations literature has
devoted significantly more attention to mix flexibility
than to volume flexibility. Interestingly, a recent sur-
vey revealed that “more than 50% [of respondents]
identified volume flexibility within supply chain man-
agement and operations as the key area for improve-
ment in 2002/2003” (Sheppard and Kent 2002, p. 40).
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Volume flexibility provides an alternative to inventory
in managing temporary imbalances in supply and
demand, which can arise because of supply-side dis-
ruptions or temporary shifts in demand. We believe
that our model of volume flexibility, parameterized by
magnitude and response time, provides a foundation
for future research into the benefits of volume flexibil-
ity in contexts other than disruption management.
An online supplement to this paper is available on
the Management Science website (http://mansci.pubs.
informs.org/ecompanion.html).
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